Gıda Ambalajlamada Nanoteknoloji

Özet

Nanoteknoloji yüzyılın en önemli gelişmelerinden bir tanesidir. Gıda endüstrisinde de nanoteknolojiden yararlanılmakta olup, ambalajların matriksine eklenen nanopartiküller aracılığıyla bariyer, mekanik ve termal özelliklerinin geliştirilmesi sağlanmaktadır. Bununla birlikte polimerlere eklenen aktif nanomateryaller, etilen ve oksijen tutuculuk yanında, antimikrobiyal özellik kazandırma gibi fonksiyonlarıyla gıdaların raf ömrünün artırılması amacıyla da kullanılmaktadır. Fakat tüm bu olumlu yönlerinin yanında, güvenlik ve sağlık konusunda endişeler de bulunmaktadır. Bu nedenle bu derlemede, gıda ambalajlama uygulamalarında kullanılan nanopartiküller ve nanoteknoloji konusunda yaşanan endişeler hakkında bilgi verilmektedir.

1.Giriş

Küreselleşme, sosyal-kültürel değişimler ve mikrobiyal kontaminasyon sonucu bozulmuş gıdaların tüketimi nedeniyle gıda kaynaklı hastalıkların artması; tüketicilerin kimyasal ve mikrobiyolojik açıdan güvenli gıdaya olan taleplerinin artmasına neden olmaktadır [1]. Bu nedenle, gıdanın üretimden son kullanıcıya ulaşıncaya kadar olan süreçte iyi biçimde korunması; uygun ambalaj malzemelerinin kullanılmasını gerektirmektedir [2]. Genel olarak ambalajlama materyalleri; ürün çeşidine ve istenen raf ömrüne bağlı olarak ambalajın mekaniksel, termal ve bariyer özellikleri göz önüne alınarak seçildiğinden, birçok kuruluş ve araştırmacı gıda ambalajlamada nanoteknolojiyi kullanarak ambalaj materyallerinin geçirgenlik özelliklerini değiştirmeyi, gıdaların raf ömrünü arttırmayı ve gıda güvenliğini sağlamayı amaçlamaktadır [3].

Nanoteknoloji tanım olarak, en az bir boyut içeren yapılarda 1-100 nm uzunluğundaki bileşenlerin üretilmesidir. Nano ölçekte üretilen malzemeler tek boyutta (çok ince kaplamalar), iki boyutta (nanoteller) veya üç boyutta (nanopartiküller) elde edilebilmektedir. Partikül boyutu nano ölçeğinde olan malzemeler, aynı malzemenin makro boyutuyla karşılaştırıldığında önemli ölçüde farklı fiziksel ve kimyasal özelliklere sahip olmaktadır [4, 5]. Nanoteknoloji; elektronik, biyomedikal, tekstil, kozmetik, boya, sağlık ve inşaat gibi birçok sektörde kullanılmakta olup, yaklaşık olarak 400.000 bilim insanının nanoteknoloji alanında çalıştığı düşünülmektedir [2]. Nanomateryaller gıda endüstrisine de birçok fırsat sunmakta olup; renklendiriciler, tatlandırıcılar, besinsel katkılar, antimikrobiyal bileşenler ve gıda ambalajlama materyalleri bu kapsamda değerlendirilmektedir [6]. Özellikle plastik veya kâğıt bazlı ambalaj matrikslerine nanopartiküllerin eklenmesi sonucunda gıda ambalajlarının antimikrobiyal, antioksidan ve gaz geçirgenliği bakımından özellikleri geliştirilmekte olup, bunun neticesinde gıdanın raf ömrü artırılmaktadır. Ayrıca, ambalajın biyolojik olarak parçalanabilirliği iyileştirilmekte, bertaraf edilecek atık malzeme hacmi azaltılmakta ve bu şekilde CO2 emisyonu minimum düzeyde tutulabilmektedir [1]. 

Bu derleme; gıda ambalajlarında bariyer, termal ve mekaniksel özellikleri geliştirme amacıyla kullanılan nanopartikülleri içermekte olup, aynı zamanda gıdalarda raf ömrünü artırma amacıyla kullanılan aktif-nanobileşenler hakkında da bilgi vermektedir. Son bölümde ise nanoteknoloji konusundaki endişeler ve yasal düzenlemeler özetlenmiştir. 

2.Mevcut Ambalajlama Sistemlerinin Eksiklikleri

Gıda ambalajlama amacıyla kullanılan poliolefin ve türevleri, etkili bariyer ve mekanik özellikleri, basit ve ucuz işleme teknikleri yönünden mükemmel özellikler sunsa da, bu polimerler yenilenemeyen kaynaklardan elde edilmektedir. Ayrıca petrol bazlı bu polimerler, petrol fiyatlarındaki istikrarsızlık ve petrol arzındaki öngörülemezlik sebebiyle mevcut durumda soru işaretleri oluşturmaktadır [7]. Plastikler sadece sürdürülebilirlik bakımından problem yaratmamakta, aynı zamanda ciddi ekolojik etkilere de neden olmaktadır. Bu ambalaj materyallerinin bertarafı çevresel kaygılar meydana getirmekte ve geri dönüşümü kompleks ve maliyetli süreçler içermektedir. Bununla birlikte, plastiklerin geri dönüşümü için gereken ısı aynı zamanda küresel ısınmadan en çok sorumlu olan çeşitli kimyasalları da üretmektedir [8]. Ambalaj materyalinin bariyer performasının meyve ve sebzeler gibi hasat sonrası solunuma devam eden ürünlerle eşleştirilmesi ise diğer bir zorluk olarak göze çarpmaktadır. Bu kapsamda kullanılan ambalaj materyalleri; polimer karışımları ve çok tabakalı kompozit yapılar kullanılarak fonksiyonel olarak geliştirilmeye çalışılsa da yüksek maliyet ve geri dönüşümde yaşanan sıkıntılar devam etmektedir [9]. İşte bu nedenlerden ötürü nanoteknoloji alanındaki çalışmalar sözü edilen sıkıntıların giderilmesi amacıyla önem kazanmaktadır. 

3.Gıda Ambalajlamada Nanokompozitler

Plastiklerde yaşanan problemlere çözüm olarak geliştirilen yenilebilir ve biyolojik olarak parçalanabilir polimerler; kırılganlık, zayıf gaz ve nem bariyeri, düşük sıcaklıklarda bozulma göstermesi ve maliyetle ilgili sorunlar nedeniyle istenilen özellikleri karşılamamaktadır [9]. Bununla birlikte çeşitli güçlendirici bileşenler eklenerek termal, mekanik ve bariyer özellikleri geliştirilmek istenen kompozitlerde ise, eklenen bileşenlerin ara yüzlerdeki etkileşimleri zayıf olmakta ve bu durum da sorunlar yaratmaktadır. Bu nedenlerden ötürü nanoteknolojik yöntemlerin polimerlere uygulanmasıyla sadece termal, mekanik ve bariyer özelliklerde gelişme sağlanmayacak olup, aynı zamanda maliyet ve fiyat etkinliği de sağlanabilecektir.

Nanokompozitler genellikle sürekli veya süreksiz bir fazdaki polimer matriksten oluşmaktadır. Matriks (sürekli faz) ve nano boyutlu bir materyalin (süreksiz faz) birleşmesinden kaynaklandığından çok fazlı bir materyal olarak tanımlanmaktadır. Nano boyutlu malzemeye bağlı olarak, nano boyutlu faz genellikle nanoküreler, nanopartiküller, nanorodlar, nanotüpler ve nanosheets veya nanoplateletler olarak karakterize edilmektedir [10].

Nano boyutlu dolgu maddeleri belirli bir matriks içerisinde dağılmış bileşenlerdir. Dolgunun en büyük boyutunun en küçüğüne oranı en boy oranı olarak da bilinen önemli bir parametreyi meydana getirmektedir [11]. Yüksek en boy oranına sahip dolgular, daha spesifik yüzey alanına sahip olup, güçlendirici etkisi de buna bağlı olarak artmaktadır [10]. Kil ve silikatlar, katmanlı yapılarından dolayı en fazla dikkat çeken dolgu malzemelerindendir [12].  

3.1. Kil

Polimerlerin özelliklerini geliştirmek için bazı nanopartiküller tanımlanmış olsa da, özellikle killer; üstün mekaniksel özellikler göstermesi, ağırlıkta azalmayı sağlaması, ısı direncini artırması, alevlenmeyi geciktirmesi ve karbondioksit, oksijen, nem ve uçucu bileşenler ile ultraviyole ışınlara karşı üstün bariyer özellikleri nedeniyle gıda ambalajlamada dikkat çeken nanopartiküllerdendir [13]. Mikrokompozit yapılarda baskın olan taktoid yapıdan dolayı killer karışmadan kalmakta ve topaklaşmaya neden olarak, materyalin özelliklerinin gelişmemesine neden olmaktadır. Fakat nanokompozit yapılarda ise katmanlı silikatlar ve polimer zincirleri arasındaki etkileşim nedeniyle iki tipte ideal nanokompozitlerin üretilmesi mümkündür [14]. Tabakalı nanokompozitler, polimerlerin killerin iç tabakalarına penetrasyonu sonucu oluşmakta olup, sıralı bir çoklu tabaka meydana getirmektedir. Dağılmış nanokompozitlerde ise kil katmanları polimer matriksinde rastgele dağılmış halde bulunmaktadır ve bunun neticesinde polimerlerin penetrasyonu daha fazla gerçekleşmektedir. Bu nedenle dağılmış nanokompozitler en iyi özelliklere sahip olan grup olarak nitelendirilmektedir [15] (Şekil1). Nanokillerin polimer özellikleri üzerindeki etkisi esas olarak yüksek yüzey/hacim oranlarından kaynaklanmaktadır, çünkü polimer-dolgu etkileşimleri arayüzey kuvvetleri tarafından yönetilmektedir. Ayrıca nanokiller polimerlere dağıldıklarında, gazların hareket etmesini engellemek üzere kıvrımlı bir yol sunan ve nüfuz etme oranlarını büyük ölçüde yavaşlatan bir labirent yapısı oluşturmaktadır [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 1. Kil ve polimerler arasındaki farklı etkileşimler: (a) Taktoid yapıda mikrokompozit (b) Tabakalı yapıda nanokompozit (c) Dağılmış yapıda nanokompozit [15]

3.2. Karbon Nanotüpler  

Karbon nanotüpler, tek duvarlı karbon nanotüpler (SWCNT) veya çok duvarlı karbon nanotüpler (MWCNT) olarak çeşitli şekillerde üretilmektedir. Tek duvarlı olanlar bir atom kalınlığında olduğu gibi, çok duvarlılar ise birkaç eş merkezli nanotüpten oluşmaktadır. Karbon nanotüpler yalnızca polimer matriksin elastik modülü ve gerilme mukavemeti gibi özelliklerini iyileştirmekle kalmamakta, aynı zamanda antibakteriyel özellikler de göstermektedir [16]. 

3.3. Silika 

Silika nanopartikülleri gözenekli materyallerin en önemlisinden bir tanesi olup, yüksek yüzey alanı, kontrol edilebilir yüzey alanı, geniş gözenek hacmi, optik olarak şeffaf özelliği, düşük toksisitesi, yüksek kimyasal ve termal stabilite gibi benzersiz özelliklerinden dolayı son zamanlarda yaygın olarak kullanılmaktadır [17]. Bu nanoparçacıklar, polimer matriksinde silikat katmanlarının aralarında takviye görevi görmekte ve bu nedenle ambalaj filmlerin teknolojik özelliklerini geliştirmede önemli yer tutmaktadır [18]. 

4.Aktif Ambalajlama Amaçlı Nanokompozitler

Geleneksel ambalajlama sistemleri; ürünü korumak, içermek, pazarlamak, tüketiciye bilgi vermek ve ürünün taşınmasını kolaylaştırmak gibi fonksiyonlara sahiptir [3]. Aktif ambalajlama sistemlerinde ise, ürünü korumayı geliştirmek amacıyla ambalajlara antimikrobiyal maddeler, koruyucular, etilen düzenleyiciler, oksijen ve nem tutucular gibi aktif bileşenler eklenmektedir. Şekil 2’de nanoteknoloji yardımıyla oluşturulan aktif ambalajlama sistemlerinin içeriği gösterilmektedir [9]. Aktif ambalajlama amacıyla kullanılan nanobileşenlerin bazıları aşağıda verilmiştir.

 

 

 

 

 

 

 

 

 

 

 

 

 

 Şekil 2. Nanoteknolojinin aktif ambalajlamaya uygulanması [9]

4.1. Titanyum Dioksit 

TiO2 nanopartikülleri, dayanıklılıkları ve düşük maliyetleri nedeniyle farklı alanlarda kullanılabilmekte olup; toksikoloji çalışmaları göz önüne alındığında insan hücrelerinde genotoksisite ve sitotoksisiteye neden olabileceğinden FDA ve diğer kuruluşlar tarafından GRAS materyali olarak derecelendirilmemektedir [19]. TiO2 ultraviyole ışığa maruz kaldığında hidroksil radikalleri ve reaktif oksijen türleri oluşturarak, antimikrobiyal ve etilen tutucu etki yaratmaktadır [20, 21] (Şekil 3). 

 

 

 

 

 

 

 

 

 

 

 

 Şekil 3. Kitosan- Titanyum Oksit Nanokompozit filmlerin etilen tutucu ve antimikrobiyal etkisi [21]

4.2.Gümüş 

Gümüş nanopartiküller, aktif ambalajlama konsepti için potansiyel bileşenlerden bir tanesi olup, bakteri, virüs ve diğer mikroorganizmalara karşı etkili olduğu belirtilmektedir.  Gümüşün antimikrobiyal aktivitesi, sülfür, oksijen veya nitrojen içeren biyolojik moleküllerde elektron verici gruplara güçlü bir şekilde bağlanan gümüş katyonuna bağlıdır. Gümüş iyonları oldukça reaktif olup, doku proteinlerine bağlanırlar ve bakteri hücre duvarında ve membranda yapısal değişiklikler meydana getirerek hücre bozulmasına ve ölüme yol açmaktadır [22]. Gümüş nanopartiküller ise gümüş iyonlarına kıyasla mikrobiyal hücrelere kolayca girebilmektedir. Gümüş nanopartiküller temelde hücre zarı hasarına ve sonuçta hücrelerin DNA'sına zarar veren ROS reaksiyonlarına neden olmaktadır [19]. Gümüş nanopartikülleri sadece antimikrobiyal olarak işlev görmemekte ayrıca su buharı geçirgenliğini de düşürmektedir. Çünkü gümüş nanopartikülleri polimer matriksinde süreksiz bir faz olarak dağılmakta ve böylece su moleküllerinin film boyunca difüzyonunu düşürmektedir. Ayrıca polimerik matrikste gümüş nedeniyle olan kıvrımlı yol da, geliştirilmiş su bariyerini sağlamaktadır [23]. 

4.3.Çinko Oksit 

Gıda endüstrisi, çinko oksiti temel bir mikro besin olan ve insanlarda ve hayvanlarda büyüme ve gelişmede önemli ve kritik roller sunan çinko kaynağı olarak kullanmaktadır. Bununla birlikte, çinko oksit antimikrobiyal aktivite de göstermekte olup, bu etki antimikrobiyal iyonların salınımı, nanopartiküllerin mikroorganizmalarla etkileşimi ve daha sonra bakteri hücresinin bütünlüğüne zarar verme gibi çeşitli mekanizmalarla açıklanmaktadır [24]. 

5.Nanoteknoloji Konusunda Endişeler ve Yasal Düzenlemeler

Nanoteknoloji her ne kadar gıda ambalajlama konusunda yüksek potansiyele sahipse de, her yeni teknoloji de olduğu gibi etik bir sorumluluk taşımakta ve öngörülemeyen riskler içerebilmektedir [25]. Endüstride, nanokompozitlerin kullanımını kısıtlayan etmenler; materyal ve işleme maliyetinin yüksekliği, mevzuattan kaynaklanan kısıtlamalar, müşteri tarafından kabulde yaşanan sıkıntılar, nanopartiküllerin çevre ve insan sağlığına etkisi konusundaki bilgi eksiklikleri ve gıda ambalajından gıdaya nanopartiküllerin geçme riskidir [54]. Nanomalzemelerin gıda maddelerine geçişini; nanopartiküllerin özellikleri (örneğin, konsantrasyon, partikül boyutu, moleküler ağırlık, çözünürlük), çevresel koşullar (sıcaklık, mekanik stres), gıda içeriği (pH değeri, bileşim), ambalaj özellikleri (polimer yapısı ve viskozitesi) ve temas süresi etkilemektedir [12].

Gıda endüstrisinde tüketicilerin nanopartiküllere doğrudan maruz kalması, insan sağlığı bakımından ciddi bir sorun teşkil etmektedir. Nanopartiküller gıda ambalaj malzemelerine bağlı kaldığı sürece, maruz kalma sınırlı veya çok düşüktür. Ancak, nanopartiküllerin gıdalara migrasyonu yüksek risk oluşturmaktadır [26]. Nanopartiküller, biyolojik ortama girdiklerinde, kaçınılmaz olarak proteinler, şekerler ve lipitler gibi bileşenlerle teması gerçekleşmektedir. Nanopartikülün boyutu küçüldükçe yüzey alanından dolayı biyolojik moleküllerle etkileşimi artmakta ve bu nedenle büyük boyutlulara göre daha fazla toksik risk meydana getirmektedir [11]. 

Nanoteknolojik yaklaşımların tüketiciler tarafından nasıl algılandığı, nanoteknolojinin gıda endüstrisindeki geleceğini etkileyen önemli bir durumdur. Yapılan çalışmalarda nanoteknolojiden türetilen ambalajın, nanoteknoloji mühendisliği ile üretilmiş gıdalardan daha kabul edilebilir olduğu ortaya konmuş olup [27], ayrıca nanoteknoloji kullanılarak üretilen gıda ve gıda ambalajlarını satın alma isteğinin algılanan riskten çok faydadan etkilendiği belirlenmiştir [28]. 

Nanomalzemeler ile ilgili bir diğer konu ise yönetmeliklerdir. Avrupa Birliği ve diğer ülkelerde, nanomalzemelerin tüketici ürünlerinde kullanımını sağlık ve güvenlik yönlerinden ele alan mevzuat sürekli olarak güncellenmektedir. 2018 yılında çıkarılan ISO 19007:2018 (E) standardı, nanopartiküllerin sitotoksik etkisinin ölçümü üzerinedir. Ayrıca, 2019’da ABD’de bebek gıdaları ile ilgili olarak migrasyon bakımından yeni tavsiyeler yayınlanmıştır [29]. Kontrollü koşullar altında migrasyon testlerinin gerçekleştirilmesi, nanomalzemelerin gıda ambalajlarına dahil edilme olasılığını değerlendirmek ve ilgili güvenlik sorunlarını açıklamak bakımından da gereklidir. Çünkü analiz koşulları, test edilen gıda matriksinin veya gıda simülantının türüne bağlı olarak değişmektedir. Bununla birlikte, bazı aktif ambalajlarda ise nanomalzemelerin bilinçli olarak serbest bırakılması amaçlandığından test metotlarının geliştirilmesi gerekmektedir [12]. 

Genel olarak, nanomateryallerin gıda ambalajlarında kullanılması için gerekli olan yasal onay süresi kompleks ve uzun olabileceğinden, firmaların hükümetlerle işbirliği içinde çalışarak, ticarileşme aşamasının kolaylaşmasına yardımcı olması lazımdır [9]. FDA ve EFSA gibi düzenleyici kurumlar ise gıda ambalajlarına uygulanan nanokompozitlerin güvenliğini değerlendirmek için rehberlik görevini üstlenmeli ve nanopartiküllerin insan sağlığına etkilerini belirlemek için standartlaştırılmış prosedürleri geliştirilme gerekmektedir [30]. 

6.Sonuç

Nanoteknoloji, gıda ambalajındaki uygulamalar açısından topluma fayda sağlamak için son derece yüksek bir potansiyele sahiptir. Özellikle aktif nanopartiküllerin plastik veya kâğıt polimer matrikslere eklenmesi, sadece gıda ambalajlarının bariyer özelliklerinin iyileştirilmesini sağlamayacak, aynı zamanda gıdanın raf ömrünü uzatan ek işlevsellikler (antimikrobiyal, antioksidan, oksijen-etilen-nem düzenleme) de kazandıracaktır. Aynı zamanda doğal biyopolimer esaslı nanokompozit ambalaj malzemeleri, çevresel endişeleri de minimuma indirgeyebilecektir. Fakat, nanokompozit ambalajların bu kadar avantajına rağmen gelecekteki senaryoyu tahmin etmek zordur. Çünkü gıda endüstrisinde nanoteknoloji alanındaki gelişmeler hem hükümet hem de endüstri için önemli zorluklar sunmaktadır. Özellikle ambalaj endüstrisi, tüketiciyi bu konuda bilgilendirmeli ve böylece tüketici güvenini sağlamalıdır. Hükümetler ise, nanopartiküller konusunda daha fazla detay içeren mevzuatlar oluşturarak, nanopartiküllerin ambalaj malzemelerinden gıdaya olası göçü, insanlar ve çevre üzerindeki toksik etkileri konusunda güven yaratmalıdır. 

Kaynaklar

[1] Apan, R., Cozmuta, A. M., Peter, A., Nicula, C., 2014. Nano food packages: from food preservation efficiency to consumer legal protection. Amfiteatru Economic Journal 16: 483-500.

[2] Pal, M., 2017. Nanotechnology: a new approach in food packaging. J Food Microbiol Saf Hyg 2: 8-9.

[3] Kuswandi, B. Nanotechnology in Food Packaging. 2016. p. 151-83.

[4] Duncan, T. V., 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science 363: 1-24.

[5] Jaiswal, S., 2016. Applications of nanotechnology in food processing and packaging. INROADS-An International Journal of Jaipur National University 5: 45-8.

[6] Alfadul, S. M., Elneshwy, A. A., 2010. Use of nanotechnology in food processing, packaging and safety–review. African Journal of Food, Agriculture, Nutrition and Development 10.

[7] Rabnawaz, M., Wyman, I., Auras, R., Cheng, S., 2017. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry 19: 4737-53.

[8] Shanmugam, K., Doosthosseini, H., Varanasi, S., Garnier, G., Batchelor, W., 2019. Nanocellulose films as air and water vapour barriers: A recyclable and biodegradable alternative to polyolefin packaging. Sustainable Materials and Technologies 22: e00115.

[9] Mihindukulasuriya, S. D. F., Lim, L. T., 2014. Nanotechnology development in food packaging: A review. Trends in Food Science & Technology 40: 149-67.

[10] Sharma, C., Dhiman, R., Rokana, N., Panwar, H., 2017. Nanotechnology: an untapped resource for food packaging. Frontiers in microbiology 8: 1735.

[11] Farhoodi, M., 2016. Nanocomposite materials for food packaging applications: characterization and safety evaluation. Food Eng Rev 8: 35-51.

[12] Honarvar, Z., Hadian, Z., Mashayekh, M., 2016. Nanocomposites in food packaging applications and their risk assessment for health. Electronic physician 8: 2531.

[13] Ray, S., Quek, S. Y., Easteal, A., Chen, X. D., 2006. The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng 2.

[14] Telis, V. R. N., 2012. Biopolymer engineering in food processing: CRC Press; 

[15] De Azeredo, H. M. C., 2009. Nanocomposites for food packaging applications. Food research international 42: 1240-53.

[16] Rezić, I., Haramina, T., Rezić, T. Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials.  Food Packaging: Elsevier; 2017. p. 497-532.

[17] Al-Asmar, A., Giosafatto, C. V. L., Sabbah, M., Sanchez, A., Villalonga Santana, R., Mariniello, L., 2020. Effect of mesoporous silica nanoparticles on the physicochemical properties of pectin packaging material for strawberry wrapping. Nanomaterials 10: 52.

[18] Giosafatto, C. V. L., Sabbah, M., Al-Asmar, A., Esposito, M., Sanchez, A., Villalonga Santana, R., et al., 2019. Effect of Mesoporous Silica Nanoparticles on Glycerol-Plasticized Anionic and Cationic Polysaccharide Edible Films. Coatings 9: 172.

[19] Hoseinnejad, M., Jafari, S. M., Katouzian, I., 2018. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical reviews in microbiology 44: 161-81.

[20] Kaewklin, P., Siripatrawan, U., Suwanagul, A., Lee, Y. S., 2018. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International journal of biological macromolecules 112: 523-9.

[21] Siripatrawan, U., Kaewklin, P., 2018. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food hydrocolloids 84: 125-34.

[22] Incoronato, A. L., Conte, A., Buonocore, G. G., Del Nobile, M. A., 2011. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. Journal of dairy science 94: 1697-704.

[23] Cano, A., Cháfer, M., Chiralt, A., González-Martínez, C., 2016. Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life 10: 16-24.

[24] Espitia, P. J. P., Soares, N. d. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S., Medeiros, E. A. A., 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology 5: 1447-64.

[25] Sumit, G., 2012. Nanotechnology in food packaging a critical review. Russian Journal of Agricultural and Socio-Economic Sciences 10.

[26] Berekaa, M. M., 2015. Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4: 345-57.

[27] Siegrist, M., Cousin, M.-E., Kastenholz, H., Wiek, A., 2007. Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust. Appetite 49: 459-66.

[28] Stampfli, N., Siegrist, M., Kastenholz, H., 2010. Acceptance of nanotechnology in food and food packaging: a path model analysis. Journal of Risk Research 13: 353-65.

[29] Enescu, D., Cerqueira, M. A., Fucinos, P., Pastrana, L. M., 2019. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 134: 110814.

[30] Hernández-Muñoz, P., Cerisuelo i Ferriols, J. P., Domínguez, I., López-Carballo, G., Catala, R., Gavara, R. Nanotechnology in Food Packaging. 2019. p. 205-32.

Mehmet Seçkin ADAY* 

Çanakkale Onsekiz Mart Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü